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ABSTRACT

The real Earth, and its theoretical model, the normal ellipsoid, have three potentials of

interest in geodesy. They are the Earth's gravity potential W, the normal gravity potential

U and the disturbing potential 7=W - U.

The potential W can be approximated by a geopotential model (a series of spherical
harmonic terms and potential coefficients) plus the rotational potential of the Earth. The
potential of the normal ellipsoid U (which can be computed exactly from its defining

parameters) and the disturbing potential 7" are also conveniently represented by spherical

harmonic series.

Derivatives of potentials W, U and T are required for a variety of geodetic purposes, such
as the computation of gravity anomalies and deflections of the vertical, as well as the
calculation of coefficients in the unified geodetic adjustment process known as collocation.
This paper describes a summation method, based on Clenshaw's recurrence formula, which

is an efficient numerical technique for computing potentials and their derivatives.



INTRODUCTION

Clenshaw's recurrence formula (Clenshaw 1955) and the associated summation algorithm
(hereafter combined and called Clenshaw's summation) is a fast and numerically stable
technique for evaluating series of polynomials which satisfy recurrence formulae (Press et
al. 1992, pp. 178-183). In geodesy, gravity potentials of the Earth W, the normal ellipsoid
U and the disturbing potential 7 =W — U are conveniently expressed as spherical harmonic
series containing associated Legendre functions. Associated Legendre functions are
orthogonal polynomials that satisfy well-known recurrence relationships, hence series
containing them are eminently suitable for evaluation using Clenshaw's summation. In
addition, Clenshaw's summation can be extended to include the numerical computation of

first and second-order derivatives of W, U and T with respect to polar coordinates r,y,4

or r,t,A (ris geocentric radial distance, t=siny where ¥ is geocentric latitude and 4 is

longitude).

In this paper, expressions for the potentials W, U and T are developed in suitable forms,
recurrence relationships for associated Legendre functions set down and Clenshaw's
summation explained and developed to include the calculation of first and second-order
derivatives. These derivatives (with respect to 7,,4) can be transformed to derivatives
with respect to geocentric Cartesian coordinates X,Y,Z or local Cartesian coordinates x,y,z

by techniques set out by Tscherning (1976a). This paper provides a re-statement of these

methods and formulae.

Clenshaw's elegant numerical method as applied to geodetic problems and the
transformation of derivatives from one orthogonal coordinate system to another have been
well documented by Tscherning (1976a, 1976b), Tscherning and Poder (1981), Tscherning,
Rapp and Goad (1983) and Gleeson (1985). This paper does not present original

development but it is hoped that the setting and presentation will add to the body of

knowledge on this topic.

An appendix to this paper contains a computer algorithm for the calculation of the Earth’s

gravitational potential.



THE EARTH'S GRAVITY POTENTIAL

The gravity potential of the Earth W(r,y,4) is the sum of its gravitational potential Vy,

and rotational potential R
W(r:l//:/l) = VW(r’W’Z’)+ R(T)l//) )

where the rotational potential of the Earth is (Tscherning 1976b, p. 126, eq. 3)

2

w 2
R(r,y) = —;(rcosw) ©)

and @ is the angular velocity of the Earth.

An approximation of V,, is represented as a series of spherical harmonics and coefficients

in two well known forms, (a) Tscherning and Poder (1981, p. 270, eq. 26)

n

N n
Vi (r,w,A) = oM z (ﬁ) Z (C;” cosmh + S sinml)Pn”’(t) (3a)
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n=0 m=0

and (b) Tscherning, Rapp and Goad (1983, p. 250, eq. 1)

n=2 m=0

N n n
Vi (r,w, ) = GTM [1 £y (éj 3 (CrreosmA + ] sinml)Pn"'(t)] (3h)

where 7y, A are polar coordinates (r geocentric radial distance, ¥ geocentric latitude and
A longitude), t=siny, GM is the product of the Earth's gravitational constant G and its
mass M, a is the semi-major axis of the reference ellipsoid, » and » are positive integers or
zero, C and S are geopotential coefficients of nth degree and mth order, P (t) are

associated Legendre functions and N is the maximum degree and order of the available

coefficients.

Both equations represent the same geopotential model of the Earth's gravitational

potential, (3b) differing from (3a) only in the starting value of ».



This is because (i) the first term of an harmonic series (z = 0) always represents the mean
value of the function, in this case GM/r; and (i) coefficients C;, C; and S/ are set to zero
to force the coordinate origin to coincide with the Earth's centre of mass [coefficients S’
will always be zero since when m=0, sin(mA)=0 and if equation (3a) is used then

CJ=1].

Another form of the potential can be developed from equation (3a) by letting ¢ =a/r and

re-arranging the double summation as (Tscherning, Rapp & Goad 1983, p. 255, eq. 10)

N

GM & ” m n pym
Vi (1, W, A4) = Z (Cn cosmA + S smmﬂ)q P’ (t) (4

7

m=0 n=m

0 1 1
where CJ =1 and C?, C/ and S, are zero.

Equations (3a), (3b) and (4) are given with conventional (or un-normalised) coefficients
and associated Legendre functions, but in practice, fully-normalised and quasi-normalised

coefficients and associated Legendre functions are used. In this paper fully-normalised

terms are denoted as C”, §”, P (t) and quasi-normalised terms as C”, §™, P (¢).

Fully-normalised, quasi-normalised and conventional associated Legendre functions and

coefficients are related in the following way (Heiskanen & Moritz 1967, p. 32 and
Tscherning, Rapp & Goad 1983, eqs 20 & 21, p. 258)

- k(2n+1)(n-m)! o (n+m)! o
P, (zr)=J - B (t) {S’_n”’}=\//e(2n+1)(n—m)/ {S:} (52)

where k=1 whenm =0
kE=2whenm >0

~ n—m)! C{nm n+m)! |C)
ro- [y (). e

Using equations (5a) and (5b) the relationship between quasi-normalised and fully-

normalised potential coefficients may be given as



= 2n+ 5¢c
g Jk(2n+1) 5 (59)

where kb =1whenm =0
k=2whenm >0

THE NORMAL GRAVITY POTENTIAL

The normal ellipsoid is an homogeneous ellipsoid concentric with and having the same mass
as the Earth, and rotating with the same angular velocity about the Earth's axis. It
generates a theoretical gravity field known as the normal gravity field, and its surface is an
equipotential surface of the normal gravity field. The normal ellipsoid is a reference
surface for both position and gravity and its currently accepted parameters are defined by
the Geodetic Reference System 1980 (GRS80) [BG 1988, p. 348] as

e equatorial radius of the Earth

a = 6378137m
e geocentric gravitational constant of the Earth (including the atmosphere)

GM = 3986005x10° m’ [5

¢ dynamical form factor of the Earth (excluding the permanent tidal deformation)
J, = 108263x107°
e angular velocity of the Earth

w = 7292115x107 radians/s

Similarly to the Earth, the gravity potential of the normal ellipsoid U is the sum of its

gravitational and rotational potentials (except that U is independent of longitude since the

normal ellipsoid is a rotationally symmetric body)

Ur,y) = VU (r.y)+ R(r:l//) (6)

Its rotational potential is given by equation (2) and its gravitational potential V;, can be

computed from the series of spherical harmonics and potential coefficients (Heiskanen &

Moritz 1967, p. 73, eq. 2-92)



[ = (2
Vu(rw) = ggl} - Z {(‘j Jon PZn(t)}] %

n=1 r

where P, (t) are Legendre polynomials and ], are normal potential coefficients derived

from the dynamical form factor J, by

= (=1)™ cLl (1 +5 ]—Zj g
Jon = (1) (2n+1)(2m+3) e ®

and e is the eccentricity of the normal ellipsoid, computed by iterative techniques using the

defining parameters of the normal ellipsoid (BG 1988, p. 351).

Another form of equation (7), suitable for evaluation by Clenshaw's summation, is
obtained by letting g=a/r, noting that P’(t)=P,(t) and only even coefficients

Jys T4 Jg» - etc are required. Then with a set of coefficients A? | defined as

A(()):]) A?:O, A(;:_]Z) Ag:o’ A3=_]4’ A?:O’ Ag:—]6’--. etc

and limiting the summation to N terms, the normal gravitational potential is given as

GM & .
Vo(rw) = ==X Alq" B)(1) ©)
n=0

For the purpose of developing an expression for the disturbing potential T, equation (9) can

be given in the apparently trivial form

GM

r

Vu(rw) =

i i (A;” cosmA + B sinm/l)q” P’ (t) (10)

m=0 n=m

where all B” =0, all A” =0 whenm >0, P’(t)=P,(t) and the coefficients A’ are

Al=1, A} =0, A)=-],, A]=0, A} =-],, A} =0, A)=—],, - etc




THE DISTURBING POTENTIAL

The disturbing potential T =W —U is equivalent to Vi, —V;, (since the rotational potentials
of the Earth and the normal ellipsoid cancel in the subtraction); hence from equations (4)

and (10), remembering that all B)" =0, a spherical harmonic series for 7" is given as

T(r,w,A) = oM i i {(c;f — A} )cosmA + S} sz'nm,l} q" P (t) (11)
Y

m=0 n=m

where C?=1and C’ =CII =SII =0,

all A” =0 whenm > 0, and when m = 0 the coefficients AS are

Ag:], A?:O, Ag:—]z, Ag:O, A‘?:—]‘I’ A?:O’ Agz_]6’... etc

LEGENDRE FUNCTIONS AND RECURRENCE FORMULAE

Associated Legendre functions P (¢) and Legendre polynomials P, (¢) are related by

m n

d
P (t)=u" dt—mPn(t) and P (t)=

L) »

where, by definition:  P"(t)=0ifn <0orm >n, P’(t)=P,(t),
t=siny and u=vI1-t> =cosy.

These equations (Heiskanen & Moritz 1967, pp. 22-23) are used to calculate "special"
values: PV(t)=1, P’(t)=t, P/(t)=u, but are unsuitable for calculating higher degree
and order values of P"(t); such values are computed from recurrence formulae for which

the special values act as "seeds". Two of these well-known formulae are (Gleeson 1985,

p. 116, eqs 2.1 & 2.2)

1 +m~1
tP” (1) + P (1) = 0 (13)
m

Br(t) -

2n—
n

Pr(t) = (2m—1)uPr}(t) = 0 (14)



Letting# = m + I in equation (13), noting that P,"(t)=0 if m >n, gives a special result

Pr . (t)—(2m+1)tP)(t) =0 (15)
Equations (13) and (15) can be written in a general polynomial form as

P () +a) ()R, (1) + BB, (t) = 0 (16)
and

Br(t)+ . ()P, (1) = 0 (17)

where the polynomial coefficients @)’ (¢) and 5" are

a;"(t)=—2n_1t and pr=¥m=1 (18)

n
n—m n—m

noting that " (¢) is a linear function of t and 5" is independent of .

For values of m such that 0<Sm <N, the recurrence formulae [eqs (16) & (17)] can be

represented in matrix form as

! 0 0 0 o[ erw] [rr]
ap(t) 1 o 0 ' S | Rt ()) 0
b, dna(t) 1 0 01| Pra(t) 0
0 b ans(t) 1 Ps(t) _ 0
0 0 : ,
: 1 o ofl - :
bu_; ay4(t) 1 011 PR-i(t) 0
L0 0 C 0 By &) 1| Prw | | o ]
or Ap=p, (19)

where A is a coefficient matrix (whose inverse A™ exists since the determinant of A is 1),

p is a vector of associated Legendre functions and p, is a vector containing only P (¢).



The recurrence relationships above, with polynomial coefficients 4 () and b, are given
for conventional associated Legendre functions P(t). Similar formulae may be derived

for quasi- and fully-normalised functions, " (¢) and P,"(t) respectively, by substituting

the relationships contained in equations (5a) and (5b) into equations (13) and (14) to give

. 2n-1 = (ntm=1)(n-m—-1) %, .\ _
Py —‘“—(nm)(n_m)”’"-f(”*\/ e () = 0 @
Br() - |22t wBri(e) = 0 en

with special values P’(t)=1, P’(t)=t and P'(t)= %, and

Em(t)_\/(znﬂ)(zn—z) . P (t)+J(2n+1)(n+m—1)(n—m-—1) 5" (1)=0

n-1 (22)
(n+m)(n—m) (2n-3) (n+m)(n—m)
Br() - (2L uBr(e) = 0 @)

with special values P(t)=1, P’(t)=+3¢ and P/(t)=3 u

Another set of recurrence relationships for modified Legendre functions is useful when it is
realised that the equations for the potentials [eqs (4), (9) & (11)] are simplified by defining

the modified conventional Legendre function p!(t) as

pn(t)=q"P"(1) 24)

Recurrence formulae for these functions can be obtained by first re-ordering equation (24)
as P"(t)=q " pr(t), then letting n=n—1 and n=n-2 to give P” (t)=q """ p" (t) and
P”, (t):q'””p;”_z(t). Also, with n = m, P7(t)=q " p"(t), and letting m=m—1 gives

P l(e)=q""" p~I(t). Substituting these expressions into equations (13) and (14) gives



pn(t) -

In—1 m n+m-—1 m
P g () + =g pia(t) = 0 (25)
n n—m

“m
pn(t) = (2m=1)uq p,=;(t) =0 (26)

Modified Legendre functions can also be expressed in quasi- or fully-normalised form as
Pr(t) = 4B (t) or Pl (t) = 4B (1) 27)

and using similar substitutions as above into equations (20)-(23) gives recurrence formulae

for quasi- and fully-normalised modified Legendre functions as

Pr) - s ta B0 + (SR P =0
Fo) - ot wg Bl = 0 @

2n+1)(n+m-1)(n-m-1) ,__
( (—;n)—(3)—;n+mign—m) )q P (t)=0 (0

_ I+l .
(e - ,/—’;17 wq prl(t) = 0 (31)

Three sets of recurrence relationships for Legendre functions are shown above:

5:([)_\/(2“1)(2;1—1)

(n+m)(n—m)

tqz_’;'iz(t)Jr\/

(i) conventional [egs (13) & (14)] and modified conventional [eqs (25) & (26)],
(i) quasi-normalised [eqs (20) & (21)] and modified quasi-normalised [eqs (28) &
(29)], and

(i) fully-normalised [egqs (22) & (23)] and modified fully-normalised [eqs (30) & 31)].

In the recurrence relationships, the Legendre functions have polynomial coefficients 4(t)

and b7 which take different forms depending on the formulae used, noting that in the

second equation of each pair # =v1-t* and 6" =0.

10



CLENSHAW'S SUMMATION TECHNIQUE

Equations (4), (9) and (11) are the fundamental equations for the potentials Vi, , V;, and T
[shown with conventional terms C7, S, A” and P (t) but also expressible with fully- or
quasi-normalised terms, C*, §”, A", P"(t) and C", S, A", D"(t), respectively].

Each equation has a common "kernel", a summation term ©™ having the general form

N
"= Y yrpr(t) =y'p (32)

where y is a vector containing the y” coefficients (y” is the transpose of y) and p is a

vector containing the conventional modified Legendre functions p"(¢) = ¢"P" (t).

Now, from matrix equation (19) p =A™ p, and equation (32) becomes

N
"= Y grprt) =y p =9y Ap, (33)

n=m

which, since ©™ is a scalar quantity (equal to its transpose) and (A™")" =(A” )/, can be

written as

v = (y AT p)" = pl (A7) y = pl (AT) "y (34)

The pattern of the elements in (A”)™, due to the upper-triangular form of A” arising

from the recurrence relationships, enables the summation v” to be calculated in the

following way.

11



Let s be a vector

]

m
m

”

s= |9, = (A7) %)

then with sy, = sk, =0, the elements of s can be calculated recursively from

”

m om m
Sn =~ a::—l (t)s;n+l - bn+2 sn+2 + yn Where msn< N (36)

Equation (34) now becomes

N
o= 2PN = prs=[pl(r) 000 - 0|5,

or simply
N
" = Y yrpr(t) = shp(t) (37)

Thus, the summation of the products of coefficients 9" and the Legendre functions p!(t)
is simply the product of a single number 7, calculated recursively from a sequence of

coefficients &’(t), b and 97, and the single Legendre function p!(t). When calculating
potentials, Clenshaw’s summation is even more simple, since summations begin at m = N

and end at m = 0, hence pj(t)=1 and the potential is just the number s .

12



EVALUATION OF THE EARTH’S POTENTIAL USING CLENSHAW'S SUMMATION

The Earth's gravitational potential, in quasi-normalised form, can be written as

N
Vi (r, @, 4) = oM Z {(cosm/l) v + (sinm/'t) %;"’} (%)
r

m=0

with the summation terms

N —~m = ~m =m

= Y Crpr(t) = S pa(t) (392)
N N, e~ —~yy o~

"= Y STt = ST a(t) (39b)

where subscripts and sub-subscripts € and s refer to the potential coefficients C” and §.

The elements 5, and 5,7 are found by using Clenshaw’s recursive summation [eq. (36)]

with polynomial coefficients Z7,(t) and b, (obtained from eq. (28) withn =7 + I and

n=n+2)as

o In+1 “m _ |(n+m+1)(n-m+1)
z,(t)= \/(n+m+1)(n“m+]) tq b"+2_J(n+m+2)(n—n’Z+2)

and the coefficients 3" =C” and S

Substituting equations (39a) and (39b) into (38) gives

GM
r

M=

Vo (r,w,4) = {(cosma) s + (sinma) 52} in () (40)

0

3
I

where the potential Vi, can be evaluated by a second implementation of Clenshaw’s

recursive summation [eq. (36)], this time using equation (29) withm =m + I giving

13



2m+1

Zm
m+2 1

m+2

=0

2:rz”il-l(t) = -
and the coefficient 3, = (cosmA) s, + (sinmd)5,"

Appendix A contains a computer algorithm, in the C language, for calculating the Earth’s

gravitational potential Vi, . It contains an outer loop (m= N to m = 0) and an inner loop

(n = N ton =m), both loops decrementing by one after each pass. The sums 5" and
S (shown as sc and ss in the computer code) are calculated in the inner loop by a first

application of Clenshaw’s summation with polynomial coefficients Z7,(¢) and 57, (a1,

12) and coefficients 3" equal to C™ or S™ (cnm, snm). These sums are then used in the

outer loop to calculate the potential Vi, (v) in a second application of Clenshaw’s
summation with a new polynomial coefficient Z7,(t) and coefficient

o= (cos ml) 37+ (sin ml) 5. Note that no Legendre functions are evaluated.
C s

Appendix A also contains a “result” for the Earth’s potentials using a set of quasi-
normalised geopotential coefficients of degree and order four and some constants of the

Geodetic Reference System 1980 (GRS80). Geopotential models usually contain fully-
normalised coefficients C” and S but small computational savings can be made in
computer algorithms by using quasi-normalised coefficients C”, S” and recursive
formulae whose coefficients Z”(¢) and 5" are more simple than their fully-normalised

equivalents @”(¢) and b [see eqs (28) & (30)]. In this event, C”

n

and §” must be

converted to C”and §™ by using equation (5¢).

14



DERIVATIVES OF THE POTENTIALS WITH RESPECT TO POLAR COORDINATES 7,y,A

For various geodetic purposes partial derivatives of the potentials W, U and T are required,

such potentials being functions of the variables r,y,A or r,t,A where t=siny .

In the case of the Earth’s gravity potential W(7r,t,A) = Vi, (7,t,A) + R(r,t) the partial

derivatives of interest are (dropping the subscript from the gravitational potential V)

oW _ 9V IR oW _dV IR W _ 3V

o T o T w T a aaTa (#12)
W _ PV PR PW PV PW PV o
Dot 9rdt orar  9roA  arar’ otar . dtoA (41b)
PW 9V PR PW IV PR W oWV

orr ot ot o 9 9’ oX N

[Note that the chain-rule for differentiation can be used to convert derivatives with respect
AAA L

v Whereﬁ=cosl// =u

to t to derivatives with respect to ¥, for example: e
P P ot dy oy
Similar derivatives of the potential U can be written by replacing W with U in equations

(41) noting that in this case V would be V;, and there would be no derivatives with respect

to A since the equipotential ellipsoid is rotationally symmetric. Partial derivatives of the
disturbing potential 7' are also often required, mainly for the calculation of gravity

dT JT aT

anomalies and deflections of the vertical, they are —, — and —

or’ dy oA’
In this paper, only derivatives of the Earth’s gravity potential W will be developed fully but
the processes can be applied to derivatives of U and 7' which in many cases are more

simple expressions.

The following partial derivatives of the rotational potential R are obtained by

differentiating equation (2) remembering t=siny and u=v1-t> =cosy

15



dR

= = o’reos’y = o’ ri’ (42)

,

a(?_]: = -g—vl—j-aa—vtf = -’ cosl//sinl//coiw = —w’r’t (43)
2

g ;i = —2(027't (44)
.
2

é;rlj = w0l (45)
2

% tf . (46)

These derivatives, added to those of the Earth’s gravitational potential V;, (hereafter

expressed simply as V) give derivatives of W according to equations (41).

Partial derivatives of V can be divided into two groups, (i) derivatives with respect to r and

A and (ii) derivatives with respect to &. The techniques of solution are slightly different

for each group.

Derivatives of V' with respectto » and A4

The following derivatives (Hopkins 1973, pp. 26-27) are obtained by partially
differentiating equation (4), noting that the denominator r can be taken inside the

summations, q= a/r , q” /r = gy (7t

Py (t) = q"B (1)

and the modified Legendre function

oV _ GM X

o= 2 2w DG cosmA + 87 sinmA)pi (1) @
r r m=0 n=m

N N
A4 = GM 2 Z m(S,’[‘ cosmA — CI sinml)p,’,"(t) (48)
al r m=0 n=m
%V GM ¥ & _ m m
FRET) = m;rg‘nm(n+1)(cn sinmA — S, cosm/l)pn (t) (49)

16



2 N N '
%—‘; = G—ij- 2 z (n+1)(n+2)(C,'l” cosmA + S sinml)p,’:‘(t) (50)
r r

m=0 n=m

?;};/ GM i i mZ(C,'l” cosmA + S, sinmﬂ,)p;”(t) (51)
T m=0 n=m

The derivatives can be re-arranged in forms suitable for Clenshaw’s summation noting that

each has a summation ©” of the form of equation (37), for example

oV N (N N ‘
= =7 2 2 n+1 C, cosm/'L)p (t)+2—(n+1)($,’f smml)p;”(t)
r m=0 \n=m n=m
M N
= — 2 cosmﬂ,z n+1)Cr pr (t)+5mmﬂ,2 (n+1)S7 pl(t)
r m=0 n=m n=m
N
= G121/1 2{ (cosmA)vn + (sinmA) vl }
m=0
N
where =Y, —(n+1)C pr()=si pn(t)
N
o =3~ o+ ST () =55, P01
hence
N
aV G]21/1 2{ (cosmA)sy: + (sinmA)s }pm (t) (52)

m=i

In a similar manner, the remaining derivatives [eqs (48)-(51)] can be written as

3‘; G:l/[ 2 m{(cosml)v - (smm/l) }
(33)
GM m{ cosml) — (sin m),)sZC } p(t)
r m=0

N

where vl = Z 2 Do (t) =55 Pm()

N

T =Y Cropr(t)=sp pr(t)

n=m

17



2
IV GM m{ cosml)*v —(smml)v }

aror &
(54)
GM m{ (cosmA)sy: — (sin ml)s } ()
7" m=0

N
where ol = 2 —(n+1)C,'1” () =5;';0P::(t)

N
i =2~ D)) (D) =57, pri(t)
J ‘2/ GM (sin m/l)vm}
ar - 55)
GM .t (sinmA)s } pr(t)
m=0

N
where ol = Z n+1)(n+2)C;" () =5:Z,TCPZ(t)

B
1l
3

(n+D)(n+2)S; pir () =5, _pm(t)

Mz

B
]
3

2 N
aé?_l‘j = - GM 2 m’ {(cosml)v;" + (sinmﬂ,)vj”}
r m=0
N (56)
oM zmz{ (cosmA)s S, "+ (sinmA)sp: }pm(t)

r

m=0

where o

M=

G 1n (1) =552 (1)

3
Il
N

m

S0 0 () =55 Pn(t)

<
I
NGB

3
il
3

The method of calculating the derivatives is identical to that of the potential V, an inner
loop where the sums s are formed using Clenshaw’s summation and an outer loop where

these sums are combined with other variables in a second application of Clenshaw’s

summation. Note that no Legendre functions are evaluated.

18



Derivatives of V' with respect to ¢

The potential V, in quasi-normalised form, was given previously as

N
V = GM Z {(cosml) T + (sinmA) '73;'"} (38)
T =0

where the summation terms 7", 7,” [defined by equations (39a) and (39b)] are functions

of . Writing derivatives in the form 9 y where appropriate

ox
N
8V oM 2 { cosmA)T" + (sinmA) ﬁm} (57)
r m=0

The general form of the summations 7" and 7", given by equation (37) is

N
= 2B = S B(Y) (37)

and noting that 5" [determined recursively from eq (36) with coefficients Z"(t) and

b1 and 37(t) = ¢"P"(t) are both functions of ¢, the derivative of the sum 7" is
T = S P ()+ S P (Y) (59)
where $7(t) = —pm m(t) and 57(t) = ——-~'"(t)

Wang and Guo (1989, eq. 5, p. 240) and Gleeson (1985, eq. 3.15, p. 121) give a recurrence

relationship for 77 (t) which can be written as

W P (t) = —mtp(t) (59)

which, when substituted into equation (58) gives the derivative of the summation as
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o = S P (t) - sm'"—mpm (t) (60)

Remembering that Z"(t) is a linear function of zand 5" is independent of ¢, the elements

5™ can be found by differentiating equation (36) with respect to ¢, giving the recursive
equation (Gleeson 1985, eq. 3.8, p. 120)

~m

S, = —dpyy (t) Sy =

~ .
bm ~m ~m ~m

Sy — Gy Suey Where  m<n<N (61a)

with 57, =5m, =0 and quasi-normalised coefficients

2n+1 T (n+m+1)(n—-m+1)
= t b, = 61b
Zu(t)= J(n+m+1)(n—m+]) 1 ™ \l(n+m+2)(n—m+2) ¢1b)
m 2n+1
dn+1=_ (610)

J(n+m+1) (n—m+1) 1

Substituting equation (60) into equation (57) and re-arranging gives

aV GM N
8t 7

m=

{(s cosmA -+, sin ml) ( cosmA+'s," sin ml)———-m} Pa(t) (62
: u

~m ~m

where the sums ?:n"z, s> S and 57 are calculated from a first application of Clenshaw’s

summation, using equations (61a) and (36) with appropriate coefficients, and the derivative

7‘/; evaluated by a second application of Clenshaw’s summation with

2m+1 " o
2m+2 1 m+2

Apy(t) =

=0

.. . t
and the coefficient y” = (s cosmA+7 v sin ml) ( cosmA+7," sin mﬂ,) m
u’
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2 2

FYE and 883 T found by differentiating equations (52) and (53) with

Second derivatives

respect to , can be written as

2 N )

IV = G]J/I 2 {(E;ZI cosmA+, sznm),) ( cosmA+s, smml)—m} P(t) (63)
otdr re = ¢

oV _ oM i {m(s cosmA =5 sznm?t) (s cosmA -7, smml) }:13"”(1:) (64)
dtdA r = u? "

2
Finally, writing second derivatives in the form 3—32} = j where appropriate
x

2 N
331:‘2/ _ oM 2 {(cos mA) 7" + (sinml) 755'"} (65)
m=0
with
T = ST B+ 257 (1) + 50 oY) (66)

and the elements 5" found from the recursive equation (Gleeson 1985, p. 121)

~m

~m m 7
"= = A ()5S —b S, —2an, 50, where mSas<N (67)

with 5, =57, =0 and coefficients @ (t), b"‘ and Z" defined above.

An expression for p7(t), the second derivative of the modified Legendre function, can be

found by differentiating equation (59) with respect to ¢ and simplifying to give

u* Fa(e) = ((m* - 1)¢ - m) By (1) 69)
which, when substituted into equation (66) gives the derivative of the summation as

~m ~mTrm 2t ~m""‘m ( ’ m)tz_m~m~m
0" = 5 () = S () 5 P (1Y) (69)
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Substituting equation (67) into equation (65) and re-arranging gives

('5,',1':’ cosmA+ 's",',,’:’ sin ml)
a;;/ _GM S (g cosmA-+ 7 sinmA) 25 m (L) )
v m=0
. (m2 - m) t2 -m
+ (’5;,': cosmA+ S stn ml)——u-;—

~m

Sms 5w and 37 are calculated from a first application of

where the sums 57, 57, s

”m
me > Vmyg me?

Clenshaw’s summation, using equations (61a), (67) and (36) with appropriate coefficients,

.. 9V . , .
and the derivative 57 evaluated by a second application of Clenshaw’s summation.
t

DERIVATIVES OF THE POTENTIALS WITH RESPECT TO GEOCENTRIC CARTESIAN COORDINATES
X,Y,Z AND LOCAL CARTESIAN COORDINATES x,y,z

The origin of the X,Y,Z coordinates lies at the “centre” of the reference ellipsoid, the same
origin as the polar coordinates r,y,4 of the geopotential model. The Z-axss is coincident
with the Earth’s rotational axis, the X-Z plane is the Greenwich meridian plane (the origin
of longitudes), the X-Y plane coincides with the Earth’s equatorial plane (the origin of
latitudes), the positive X-axzs is in the direction of the intersection of the Greenwich

meridian plane and the equatorial plane and the positive Y-axzs is advanced 90° east along

the equator.

The origin of the local Cartesian coordinates x,,z lies at the point Py (7,,w,,4,). The
positive z-axis is in the direction of increasing geocentric radius 7, the x-z plane lies in the
meridian plane passing through P, with the positive x-axss pointing north and the x-y plane

is perpendicular to the x-z plane with the positive y-axzs pointing east.
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Geocentric and local Cartesian coordinates are related by the matrix equation (Tscherning

19764, p. 74, eq. 8)

X X, x
Y =Y |+C"|y 71)
Z Z, z
where
X, = rycosy,cosh, —smy,cosA, —sink, cosy,cosh,
Y, = rycosy,sinh, and CT =|-siny,sind, cosh, cosy,sink,
Z, = nsmy, cosy, 0 sy,

Defining the vectors X; = [X; Y, Zi]T and x; =[x, 9, Z.]T Tscherning (19764,

3 I3

pp- 74-75) shows that matrices of partial derivatives are related by

[ oV | oV
LAM G A a
8X,.] [8x-:| 2

13

BERY | 9V
2 __|=cC C b
X, 8X]} [ax,.axj] 725)

The vector of first derivatives is (Tscherning 1976a, p. 79, eq. 51)

and

gria
r dt

v |1av i}
ox. | |uroi 73)
A%

| or
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The symmetric matrix of second-order derivatives is (Tscherning 1976a, p. 80, eq. 58)

19Vt 20 ]
rar 1ot o
9’V 1(d°v ¢ aV 190Vt dV 1 9V
= - = = Y2257 ¢ (74)
Jx; 0x; otdA u® dA rdr r°dt ur’ A
ul 0’V 19V 13V 19V 9’V
T dtdr r dt r\drdiA rda or? |

Solving equation (72a) gives the first derivatives (Heiskanen & Moritz 1976, p. 230,

eq. 6-18, noting that gy‘i = aa—‘t/% where ;—:j = cosy = u)
oV oV utcosA dV _ sind oV
(75)

0X - MCOS}LE;_ r ot ur oA

oV oV utsinA oV cosA oV
n + (76)
Y or r ot ur oA

0Z  or r ot 77)

and solving equation (72b) gives the second-order derivatives (Tscherning 1976a,

pp- 80-82, eqs 60-65)

2 2 2 2 2 2 ; 2
9’V 4’ cos 1(72(9 V+23V_ QV) sin® 2 9V 1(1-—%%0521)8‘/

= 2 -
0X? r? or? g ot Tt&t&r r’u’ N * r r
78
+—(3u cos? 4 — 1)8V 2cosAsin A LB_V_*_t 2’V _, 2’V 7
r ot r? w? A dtdr oroi
0%V wlsin® A ,9°V  ,9°V V) cos’A 9V 1 2 - 2,\0V
= +1 - 2rt =(z- Al
ov: T (r P T L T A v e U
79)
(3u sin? d— ])GV 2cosAsin A 1 A4 +1 0%V _, 0’V
r ot r? R YIRFTTY) drdi
aQV_t2&+£ u282V+2 t82V+ a—V—3—'-9-Y- 80
022 "7 T AY o dtar ar o (30)
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0%V stmhcos A 0%V 0%V A% rA% 0%V 1 0°V
Xy - 7 {”2[*?”2 = "E”(ﬁ?‘zwtar rr
(81)
+sin2},—coszl , vV +ié’_V_r 0V
r? otdr  u: oA droA
9%V cos A ,0%V  ,9*V 9V , 10V ,  ,10%V
IX0Z - 7 {”{—” b e wl |l el Ll e o
_sén)L " 0’V + rt 9%V
r’ 0tod u drdi
2’V sin ,0°V  ,9°V 9V , 10V , 0%V
= —u? == 32— 11— -
Vo7 " {ut( u Py +7r 57 r&r +u [ t Z] at+r[u t]atar
(83)

y

cos A " 0’V +r£ A%
2 0tdAX  u droi

In equations (72) to (83) V can be replaced by W or 7, also by U or V,, if derivatives of

the normal gravity potential or normal gravitational potential are required. In the latter
cases, derivatives with respect to 4 will be zero since the normal ellipsoid is rotationally

symmetric.

Equations (75) to (83) give explicit relationships between geocentric Cartesian functions
on the one side and geocentric spherical functions on the other. Identical numerical results
can be obtained from the matrix equations (72) when values for the spherical functions are
stored as (i) a 3XxI vector as per equation (73), (i) a 3X3 symmetric matrix as per
equation (74) and (iii) a 3xJ3 orthogonal coefficient matrix C as per equation (71).
Tscherning (1976a, pp. 82-84) shows that with an appropriate orthogonal coefficient
matrix, this technique can be used to determine derivatives of the normal gravity potential
U with respect to other Cartesian reference frames, such as a local system with the z-axzs

coincident with the direction of the normal gravity vector.

Tt should be noted that some spherical functions have the variable # in the denominator,

since #=cosy , these functions will be indeterminate at the north or south poles and

computer algorithms should be constructed so as to guard against this event.
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When developing the equation for the disturbing potential T' [equation (11)] it was
assumed that the parameters GM and a (g =afr) had the same values in the equations for
the gravitational potentials Vi, and Vj, [equations (4) and (10) respectively] and also that

@ had the same value for the Earth and the normal ellipsoid. This may not be the case in

practice, in which event, equation (11) should be modified to

I(r,w,A) = 2 Z {(Cn —-xyA, )cosml + S smml} qw PV (t) + (RW —RU)
m=0 n=m
where x = GMy , Y= QU = X and the subscripts W and U refer to values applicable
GMy, Qv

to the Earth and the normal ellipsoid respectively. Ry, and R, are given by equation (2)

with appropriate values for @ . Derivatives of 7" (using the equation above) are obtained in

the same way as derivatives of W.

NUMERICAL CHECKS ON DERIVATIVES

Derivatives of V and W must satisfy the following equations, firstly Laplace’s equation

(Cartesian and polar form)

o LIV AV _ .
8x2 ayQ 822 - ( a)

ga_v+___&2v __2_13_(?_Y.+ 1 82V+_M_2_82V — 0 84b
ror  ort o at w2 ol (84b)

[Equation (84b) is the trace (sum of the diagonal elements) of the matrix equation (74),
given by Tscherning (1976a, p. 81, eq. 59) and also in a similar form by Heiskanen and
Moritz (1967, p. 19, eq. 1-41)] and secondly, for a point on or above the Earth’s surface

W W W W W 9'W 20’ o
0% ay | 97 ox  ov: a7 ®)
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For points on the reference ellipsoid (GRS80), derivatives of the normal gravity potential
U with respect to spherical coordinates 7,¢,4 and geocentric Cartesian coordinates X,Y,Z
satisfy equations for the normal gravity ¥ and the geodetic latitude ¢ (Tscherning 1976a,
eqs 68 & 69, p. 83). Also, derivatives of U, with respect to a local Cartesian system with

the z-axis in the direction of the normal gravity vector, satisfy equations arising from the

rotational symmetry of the normal ellipsoid (Tscherning 1976a, p. 84).

SUMMARY

Clenshaw’s summation is an efficient numerical technique for calculating potentials of the
Earth and their derivatives. The method, developed by C.W. Clenshaw in 1955 for the
summation of Chebyshev polynomials, has the advantage that truncation errors (inherent
in the evaluation of coefficients of recurrence relationships when N is large) do not
accumulate to cause significant error in the sum of a series of orthogonal polynomials. The
numerical accuracy of the technique (applied to geodetic problems) has been verified by
Gleeson (1985) who compared the method with traditional analytic techniques involving
the recursive computation of Legendre polynomials. Gleeson also showed that the
technique offers considerable savings in computation time (compared with analytic

methods) verifying the studies by Tscherning, Rapp and Goad (1983).

This paper has presented the necessary equations for the computation of the Earth’s
gravity potential W and its derivatives as well as a computer algorithm demonstrating
Clenshaw’s summation. Interested readers should be able to modify the equations to

enable the computation of potentials U and T and their derivatives.
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APPENDIXA  C computer algorithm for calculating the Earth’s gravity potential W.

The algorithm requires GM the product of the Earth’s gravitational constant G and its mass M,
Omega the angular velocity of the Earth, a the equatorial radius of the Earth, X,Y,Z geocentric
Cartesian coordinates of a point and a set of quasi-normalised geopotential coefficients stored in an
array Cvec[]. The algorithm does not include header files, normally required in C programs,
proper definitions of integer and real variables, or the definition of the real array Cvec/]. No

method of input or output is given.

Cvec[0] = 1.0;

lambda = atan2(Y,X);
Om2 = Omega*Omega

1

7

’

r = sqrt(X*X + Y*Y + Z*Z);
P = sqgrt(X*X + Y*Y);
P2 = p*p;
t = Z/xr;
u = p/r;
a = a/r
42 = g*q
v = 0.0;
km = (N+1)* (N+1);
for (m=N; m>=0; m--) {
Sc = Ss = Scl = Ss1 = 0.0;
km = km - ((m==0)? 1 : 2);
k = km;
for (n=N; n>=m; n--) {
bid = sqgrt(n+m+l) *sgrt (n-m+1) ;
v = sqgrt(n+m+2) *sgrt (n-m+2)
al = g*(n+n+l)/x;
alt = al*t;
b2 = -qg2*x/y;
Cnm = Cveclk];
Snm = ((m==0)? 0 : Cvecl[k+1l])
Sc2 = Scl;
Scl = Sc;
Sc = alt*Scl + b2*Sc2 + Cnm;
Ss2 = Ssl;
Ssl = Ss;
Ss = alt*Ssl + b2*Ss2 + Snm;
k =k - (n+n-1);
}
bld = sqgrt(m+m+l) ;
Y = sqQrt (m+m+2) ;
al = g*x/y;
alu = al*u;
v = alu*V + Sc*cos (m*lambda)
+ Ss*sin(m*lambda) ;
}
V = GM/r*V;
R = Om2*p2/2.0;
W =V + R;

Cvec]] is an array containing guasi-normalised
geopotential coefficients C(n,m) and S(n,m) where n is
degree and m is order. The order of elements in
Cvecf]is C(0,0), C(1,0), C(1,1), 5(1,1), C(2,0), C(2,1),
5(2,1), C(22), S(2,2), C(3,0), C(3,1), S(3,1), C(3,2),
5(3,2), ..., C(N,N), S(N,N) where N is the maximum
degree and order. Cvec(] does not contain the
coefficients S(n,m=0) since these coefficients are zero.
lambda is longitude

Omega is the angular velocity of the Earth.

1 is geocentric radiius; X,Y,Z are geocentric coords.

p is perpendicular distance from Z axis

t = sin(psi) where psi is geocentric latitude
u = cos(psi)
a is semi-major axis of reference ellipsoid

initialise gravitational potential V

(km - 1) is pointer to coefficient S(N,N) in Cvec[]
outer loop "m" in potential summation, m is order
initialise variables for Clenshaw recursion
km=km-1ifm=0; else km=km-2

set k to point at coefficient C(n,m) in Cvec[]
inner loop "n" in potential summation, n is degree

set coefficient a(n+1) in 1st Clenshaw summation

set coefficient b(n+2) in 1st Clenshaw summation
Cnm, Snm are coefficients C(n,m), S(n,m) in Cvec|]
Snm=0whenm=10

Clenshaw’s recursive summation for Sc

Clenshaw’s recursive summation for Ss

end of “n” loop in potential summation
coefficient a(n+1) in 2nd Clenshaw summation.

2nd Clenshaw recursive summation
end of “m” loop and potential summation
V'is Earth’s gravitational potential

R is rotational potential

W is Earth’s gravity potential

This computer algorithm closely follows those of Tscherning and Poder (1981) and Tscherning,

Rapp and Goad (1983).
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For the purposes of checking a computer program, similar to that above, the following constants
and geopotential coefficients are useful.

For the Geodetic Reference System 1980 (GRS80)

Omega = 7.292115E-05 rad/s
GM = 3.986005E+14 m3/s2
a = 6378137.000 m

Fully-normalised geopotential coefficients (OSU91A1F) to degree and order 4

n m C(n,m) S(n,m)

0 0 0.000000000000E+00 0.000000000000E+00
1 0 0.000000000000E+00 0.000000000000E+00
1 1 0.000000000000E+00 0.000000000000E+00
2 0 -0.484165532804E-03 0.000000000000E+00
2 1 0.857179552165E-12 0.289607376372E-11
2 2 0.243815798120E-05 -0.139990174643E-05
3 0 0.957139401177E-06 0.000000000000E+00
3 1 0.202968777310E-05 0.249431310090E-06
3 2 0.904648670700E-06 -0.620437816800E-06
3 3 0.720295507400E-06 0.141470959443E-05
4 0 0.540441629840E-06 0.000000000000E+00
4 1 -0.535373285210E-06 -0.474065010407E-06
4 2 0.350729847400E-06 0.663967363224E-06
4 3 0.991080200230E-06 -0.202148896490E-06
4 4 -0.190576531700E-06 0.309704028950E-06

Quasi-normalised geopotential coefficients (OSU91A1F) to degree and order 4

n m C(n,m) S(n,m)

0 0 0.000000000000E+00 0.000000000000E+00
1 0 0.000000000000E+00 0.000000000000E+00
1 1 0.000000000000E+00 0.000000000000E+00
2 0 -0.108262704371E-02 0.000000000000E+00
2 1 0.271063974856E-11 0.915818936521E-11
2 2 0.771013251591E-05 -0.442687801917E-05
3 0 0.253235282554E-05 0.000000000000E+00
3 1 0.759439624906E-05 0.933286503891E-06
3 2 0.338488538116E-05 -0.232146574026E-05
3 3 0.269509900592E-05 0.529335860414E-05
4 0 0.162132488952E-05 0.000000000000E+00
4 1 -0.227139648263E-05 -0.201128750149E-05
4 2 0.148802072077E-05 0.281697495013E-05
4 3 0.420479718169E-05 -0.857645133105E-06
4 4 -0.808547747400E-06 0.131396291419E-05

Geocentric coordinates (latitude $37° 48 and longitude E144° 58’ on surface of GRS80 ellipsoid).

X = -4131810.563 m
Y = 2896708.708 m
Z = -3887927.165 m
Results: V = 62569226.824976, R = 67699.091078, W = 62636925.916054 m2/s2
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